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The problem of the nahxral vibrations of a momentless spherical she11 is investigated. It is reduced to the 

solution of a system of ordinary differential equations of the fourth order in the variables. It is shown that 

there are two classes of solution of this system: (1) all three components of the displacements are non-zero, 

and (2) only the tangential components are non-zero. For each of these classes the system of equations is 

reduced to solving second-order equations, i.e. in each class there are two linearly independent solutions. A 

regular solution is obtained for class 1, expressed in associated Legendre functions, and a solvable equation 
for class 2. The two classes of solution obtained enable one to solve the problem of the vibrations of a 
momentless spherical shell fairly effectively for any tangential boundary conditions. 

THE EQUATIONS of motion of a momentless spherical shell and the boundary conditions in standard notation 
can be written in the following form 
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where N1 is the normal meridional force, S is the shear force, and k, and k2 are elastic clamping coefficients. 
We will write the relations of elasticity and the expressions for the strains as follows: 
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Using the method of separation of variables, we obtain a regular solution of problem (l), (2) at the vertex of 
the shell for the above-mentioned class 1 in the following form 
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u = (1 + O)C,~(dP~(e)/de)cosn~coswr 

u= -(I +0)6,,(P~(e)/sine)sinnlpcoswr 

w= [l -o-m(m+l)+(l -O*)h~]Cm,P”,(~)cosn~~os~f. A:, = pR’w=/E (5) 

where P”, (0) are the associated Legendre functions (n = 1, 2, . .), and m are the roots of the algebraic 
equation 

(1 -A’)m(m+l)-[2+(1 +30)hz -(l -cJ~)~“] =0 (6) 

The problem is solved individually for each number n of waves along parallels of the shell. 
Thus, to determine the index m in the associated Legendre functions, in terms of which the solution (5) is 

expressed, we obtain the quadratic equation (6). Its roots ml and m2 are real, and their sum is equal to -1. We 
know that in this case the Legendre functions Pk, and P:, are linearly dependent. Hence, two linearly 
independent solutions expressed in terms of associated Legendre functions do not exist. 

We will show that in this class of solution (all three components of the displacement are non-zero) a second 
regular solution at the vertex of the cell does not, in general, exist. 

Separating the variables, we will take the solutions of system (1) in the form 

U = U(e)cosn~coswt, v = v(e)~i~~n~c~~d. ),’ = w(e ) COSTS cos or (7) 

After substituting into system (1) and cancelling factors which depend on cp and t from the third equation, we 
obtain the expression 

L(U, V)=(2 -X)W (8) 

+ nl’), xt = 
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Substituting this into the first two equations we can write them in the form 
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Multiplying the first equation of (9) by sin 0, differentiating it with respect to 0, and then adding the equation 
obtained to the second equation of (9), multiplying it first by n, and using Eq. (8), first multiplied by sin@, we 
obtain 

asine $f + acosB$- [s - bsinO(2 -X_)]W=O 

Hence, the resolvent equation has turned out to be a second-order equation, and not a fourth-order 
equation, as might have been supposed. The regular solution of this equation will be identical with the 
component Win (5) if we omit the factor C,,,,cosn,cosot in the expression for it. The second solution of this 
equation, due to the presence of a singularity for the second derivative in (10) at the vertex of the shell (0 = 0), 
will be irregular. 

For n#O, when it is required to satisfy the two boundary conditions (2), it is necessary to have one other 
regular solution. Since the boundary conditions (2) do not contain the bending function W, we will assume that 
when n # 0 there is a second class of solution of system (1) of the form (7) when W= 0. 

In this connection it is necessary to show that when W = 0 the system of three equations for the two unknown 
functions U and V are compatible and lead to a second-order resolvent equation. 

In fact, when W= 0, the system takes the form 

b(, _ 2n(l -0) 
___ /.rv. (I)=0 

sin e 

bV+2(1 -u)dL(V.(.:)/dO=I). I.(L’. I’)=0 (11) 

Multiplying the first equation of (11) by sin 0 and differentiating it with respect to 0, we can show that the 
second equation of (11) is a consequence of the first and third. 



Natural vibrations of a momentless spherical shell 

Now consider the system of first and third equations (11). By finding V from 
substituting it into the first, we obtain a second-order equation for the component U 
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the third equation and 

$+ 3gcteo+(2n-l+crg~e- . &U=O 

Using this equation we can obtain a second regular solution, which will be linearly independent with respect 
to the previously obtained regular solution (5). 

EXAMPLE OF THE CALCULATION 

Consider the axisymmetrical vibrations of a shell in the form of a spherical cupola (n = 0). 
Of the boundary conditions (2) it is only necessary to satisfy the first. For the special case when u (0,) = 0, it 

follows from this equation and the solution (5) that the frequency equation has the form 

dP&/d0 = 0 when 8 = 6, (12) 

We will determine the values of the first two frequencies of the axisymmetric free vibrations of a hemispherical 
cupola with the boundary condition u(r/2) = 0. 

Equation (2) was solved using tables [l]: ml = 1.92 and m2 = 3.95. Further, using Eq. (6) we obtain 
A,,, = 0.718 and ho2 = 0.920, which gives values of 1530 and 1960 s-l for the first two frequencies. The free 
vibrations of a steel hemispherical cupola with a diameter of 76.2 cm and a thickness of 0.159 cm, rigidly 
clamped along the contour, has been investigated experimentally [2]. The first two frequencies were 1540 and 
1880 s-l, which agree well with the calculations. 

In conclusion we note that the investigation carried out above enables the frequencies and modes of free 
momentless vibrations of spherical shells to be determined fairly easily. 
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